Criticality and information processing in the brain

More than two decades of empirical observations suggest that the brain self-organizes to operate near criticality, a state located at the border between order and disorder, characterized by peculiar features such as long-range correlations and scale invariance of activity, maximal variability of spatio-temporal patterns, and wide response range to perturbations.

Theoretical arguments and numerical models indicate that criticality could support optimal computational capabilities by providing a favorable trade-off between reliability and flexibility needed to achieve collective neural behaviors that underlie complex brain functions. Despite signatures of criticality in brain dynamics across spatial scales and systems, the alleged functional role of criticality in brain functions currently lacks direct in vivo empirical confirmation. 

Our project aims to investigate in vivo functional advantages of brain criticality, elucidating the relation between emergent brain-wide critical dynamics, information processing, and brain function.